The product imports, requires, or includes executable functionality (such as a library) from a source that is outside of the intended control sphere.
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid [REF-1482].
When the set of acceptable objects, such as filenames or URLs, is limited or known, create a mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs, and reject all other inputs.
For example, ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as the ESAPI AccessReferenceMap [REF-45] provide this capability.
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between the process and the operating system. This may effectively restrict which files can be accessed in a particular directory or which commands can be executed by the software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide some protection. For example, java.io.FilePermission in the Java SecurityManager allows the software to specify restrictio...
Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations.
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conf...
Store library, include, and utility files outside of the web document root, if possible. Otherwise, store them in a separate directory and use the web server's access control capabilities to prevent attackers from directly requesting them. One common practice is to define a fixed constant in each calling program, then check for the existence of the constant in the library/include file; if the constant does not exist, then the file was directly requested, and it can exit immediately.
This signif...
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
Many file inclusion problems occur because the programmer assumed that certain inputs ...
Use an application firewall that can detect attacks against this weakness. It can be beneficial in cases in which the code cannot be fixed (because it is controlled by a third party), as an emergency prevention measure while more comprehensive software assurance measures are applied, or to provide defense in depth [REF-1481].
An attacker could insert malicious functionality into the program by causing the program to download code that the attacker has placed into the untrusted control sphere, such as a malicious web site. This could enable the injection of malware, information exposure by granting excessive privileges or permissions to the untrusted functionality, DOM-based XSS vulnerabilities, stealing user's cookies, open redirect to malware (CWE-601), etc.
According to SOAR [REF-1479], the following detection techniques may be useful:
According to SOAR [REF-1479], the following detection techniques may be useful:
According to SOAR [REF-1479], the following detection techniques may be useful:
According to SOAR [REF-1479], the following detection techniques may be useful:
According to SOAR [REF-1479], the following detection techniques may be useful:
According to SOAR [REF-1479], the following detection techniques may be useful:
CVE-2010-2076Product does not properly reject DTDs in SOAP messages, which allows remote attackers to read arbitrary files, send HTTP requests to intranet servers, or cause a denial of service.
CVE-2004-0285Modification of assumed-immutable configuration variable in include file allows file inclusion via direct request.
CVE-2004-0030Modification of assumed-immutable configuration variable in include file allows file inclusion via direct request.
CVE-2004-0068Modification of assumed-immutable configuration variable in include file allows file inclusion via direct request.
CVE-2005-2157Modification of assumed-immutable configuration variable in include file allows file inclusion via direct request.