The product utilizes multiple threads, processes, components, or systems to allow temporary access to a shared resource that can only be exclusive to one process at a time, but it does not properly synchronize these actions, which might cause simultaneous accesses of this resource by multiple threads or processes.
Synchronization refers to a variety of behaviors and mechanisms that allow two or more independently-operating processes or threads to ensure that they operate on shared resources in predictable ways that do not interfere with each other. Some shared resource operations cannot be executed atomically; that is, multiple steps must be guaranteed to execute sequentially, without any interference by other processes. Synchronization mechanisms vary widely, but they may include locking, mutexes, and semaphores. When a multi-step operation on a shared resource cannot be guaranteed to execute independent of interference, then the resulting behavior can be unpredictable. Improper synchronization could lead to data or memory corruption, denial of service, etc.
Use industry standard APIs to synchronize your code.
Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)