The product uses external input to construct a pathname that should be within a restricted directory, but it does not properly neutralize absolute path sequences such as "/abs/path" that can resolve to a location that is outside of that directory.
This allows attackers to traverse the file system to access files or directories that are outside of the restricted directory.
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conf...
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180). Make sure that the application does not decode the same input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by introducing dangerous inputs after they have been checked.
Use an application firewall that can detect attacks against this weakness. It can be beneficial in cases in which the code cannot be fixed (because it is controlled by a third party), as an emergency prevention measure while more comprehensive software assurance measures are applied, or to provide defense in depth [REF-1481].
The attacker may be able to create or overwrite critical files that are used to execute code, such as programs or libraries.
The attacker may be able to overwrite or create critical files, such as programs, libraries, or important data. If the targeted file is used for a security mechanism, then the attacker may be able to bypass that mechanism. For example, appending a new account at the end of a password file may allow an attacker to bypass authentication.
The attacker may be able read the contents of unexpected files and expose sensitive data. If the targeted file is used for a security mechanism, then the attacker may be able to bypass that mechanism. For example, by reading a password file, the attacker could conduct brute force password guessing attacks in order to break into an account on the system.
The attacker may be able to overwrite, delete, or corrupt unexpected critical files such as programs, libraries, or important data. This may prevent the product from working at all and in the case of a protection mechanisms such as authentication, it has the potential to lockout every user of the product.
Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)
CVE-2024-0520Product for managing datasets for AI model training and evaluation allows both relative (CWE-23) and absolute (CWE-36) path traversal to overwrite files via the Content-Disposition header
CVE-2022-31503Python package constructs filenames using an unsafe os.path.join call on untrusted input, allowing absolute path traversal because os.path.join resets the pathname to an absolute path that is specified as part of the input.
CVE-2002-1345Multiple FTP clients write arbitrary files via absolute paths in server responses
CVE-2001-1269ZIP file extractor allows full path
CVE-2002-1818Path traversal using absolute pathname